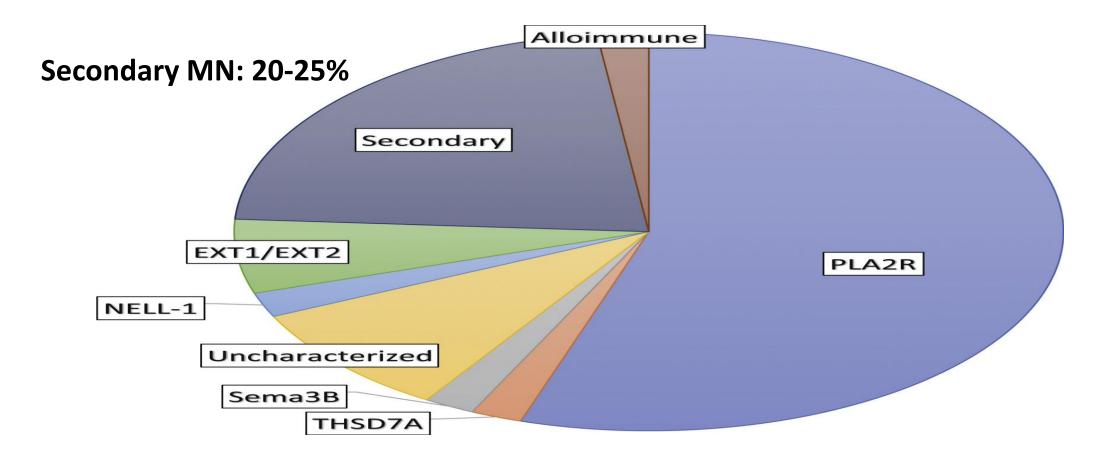

## Rituximab is preferable than Cyclophosphamide in MN.

Prof: Iman Sarhan

Prof of nephrology ASU


Head of Department of Nephrology AFCM



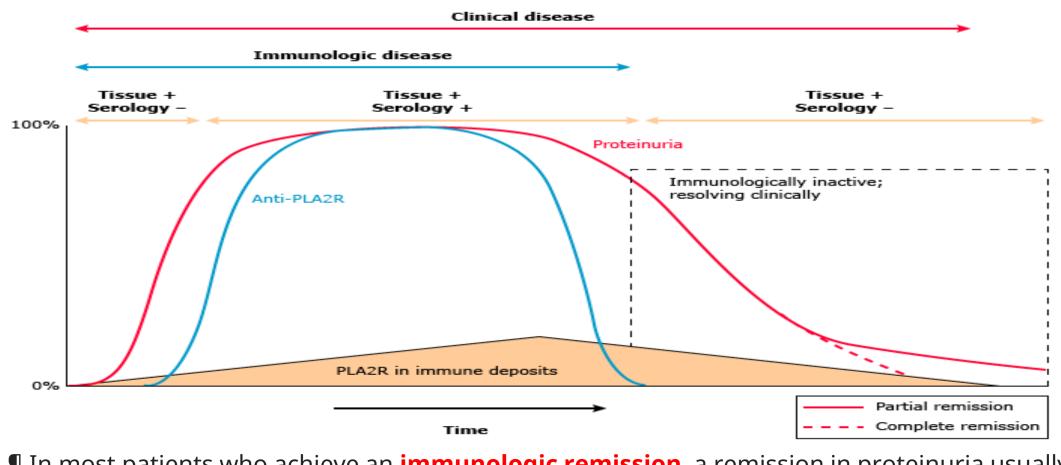


Membranous nephropathy (MN)

• The most common cause of nephrotic syndrome in adult (approximately 20 to 30%)



Non-PLA2R-associated MN


PLA2R-associated MN 70-80%



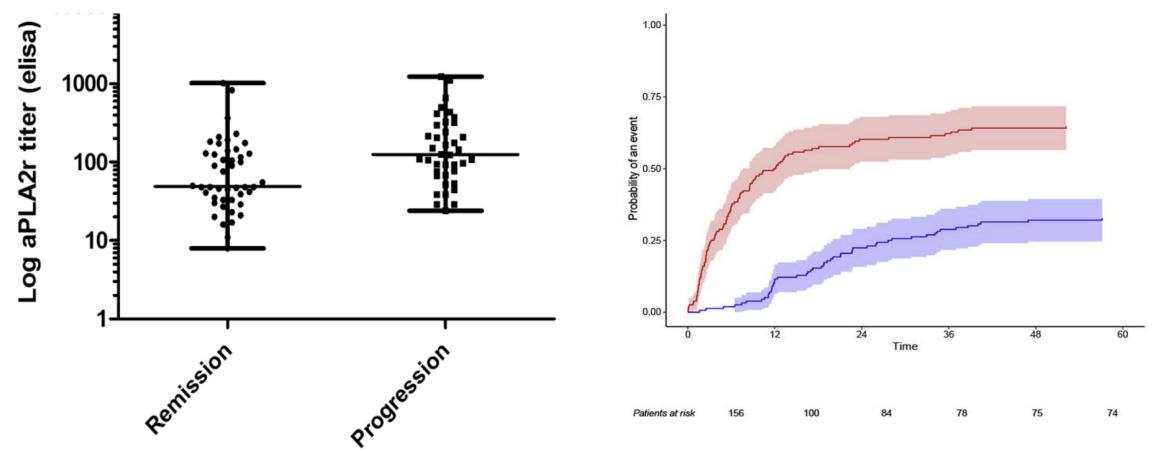
#### **Primary membranous nephropathy** 75 to 80 %

Loulwa Alsharhan, Laurence H. Beck . Membranous Nephropathy: Core Curriculum 2021 American Journal of Kidney Diseases Volume 77 Issue 3 Pages 440-453 (March

#### PLA2R staining versus anti-PLA2R versus proteinuria schematic



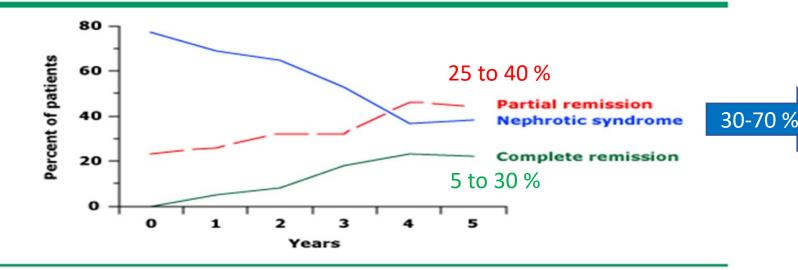
 $\mathbf{s}_{\mathbf{s}}$  In most patients who achieve an **immunologic remission**, a remission in proteinuria usually follows within 12 to 24 months.


of

#### PLA2R: phospholipase A2 receptor.

Reproduced from: Francis JM, Beck LH Jr, Salant DJ. Membranous nephropathy: A journey from bench to bedside. Am J Kidney Dis 2016; 68:138. Illustration used with the permission of Elsevier Inc. All rights reserved.

#### Anti-PLA2R1 Antibodies as Prognostic Biomarker in Membranous Nephropathy


Anne-Els van de Logt <sup>1</sup>, Joana Justino <sup>2</sup>, Coralien H Vink <sup>1</sup>, Jan van den Brand <sup>1</sup>, Hanna Debiec <sup>3</sup>, Gérard Lambeau <sup>2</sup>, Jack F Wetzels <sup>1</sup>



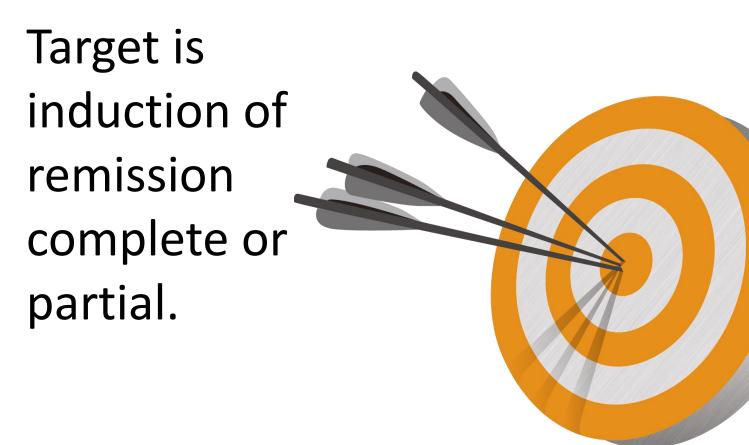
aPLA2R1ab levels at baseline of patients with normal serum creatinine with progression (n = 39) and or spontaneous remission (n = 46).

# Natural history of MN (Likelihood of spontaneous remission)

High incidence of remission in untreated membranous nephropathy



ESKD in untreated patients with nephrotic syndrome is 14 % at 5 years, 35% in 10 years, 41% in 15years.

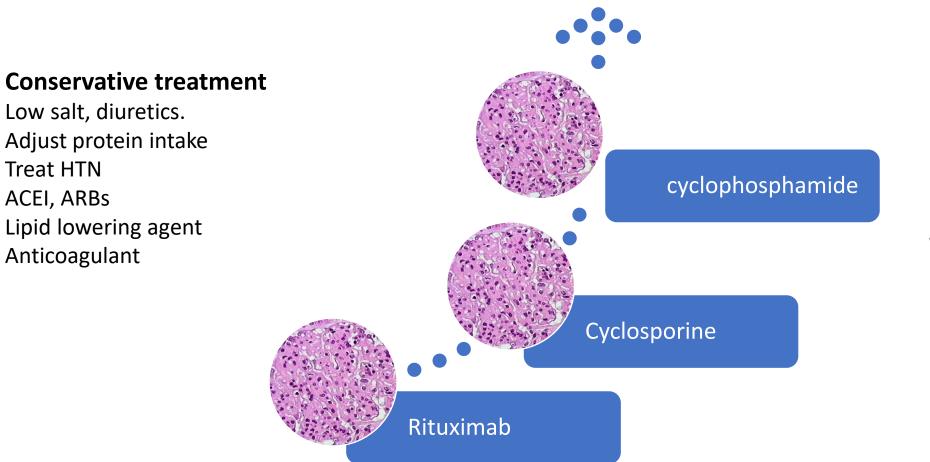

 the rate of ESKD in untreated patients who remain nonnephrotic as low as 2 % at 10 years.

Course of 100 consecutive untreated patients with idiopathic membranous nephropathy. Over a five-year period, there was a progressive increase in the incidence of partial or complete remission, while the incidence of the nephrotic syndrome fell.

Data from: Schieppati A, Mosconi L, Perna A, et al. Prognosis of untreated patients with idiopathic membranous nephropathy. N Engl J Med 1993; 329:85.

#### Risk stratification of patients with primary membranous nephropathy\*

|                                                                                                         | Risk of progression                                                                                                                                                                             |                                                                                                              |                                                                                                                                                                       |                                                                                                                                               |  |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                         | Low                                                                                                                                                                                             | Moderate                                                                                                     | High                                                                                                                                                                  | Very high                                                                                                                                     |  |  |
|                                                                                                         | Over an observation<br>criteria must be pres                                                                                                                                                    | 2 or more of the<br>following <b>at the</b><br><b>time of diagnosis</b> :                                    |                                                                                                                                                                       |                                                                                                                                               |  |  |
| Kidney function                                                                                         | <ul> <li>Normal or stable<br/>(&lt;25%<br/>decrease) eGFR<br/>over the<br/>observation<br/>period</li> </ul>                                                                                    | <ul> <li>Normal or stable<br/>(&lt;25%<br/>decrease) eGFR<br/>over the<br/>observation<br/>period</li> </ul> | <ul> <li>Decrease in<br/>eGFR ≥25%, not<br/>explained by<br/>other causes, at<br/>any time during<br/>the observation<br/>period</li> </ul>                           | <ul> <li>Serum<br/>creatinine ≥1.5<br/>mg/dL (≥133<br/>micromol/L),<br/>considered due<br/>to active MN</li> <li>Decrease in</li> </ul>       |  |  |
| Proteinuria                                                                                             | <ul> <li>&lt;4 g/day at the<br/>end of the<br/>observation<br/>period</li> </ul>                                                                                                                | <ul> <li>Between 4 and<br/>8 g/day at the<br/>end of the<br/>observation<br/>period</li> </ul>               | <ul> <li>&gt;8 g/day at the<br/>end of the<br/>observation<br/>period<br/>or<br/>Persistent<br/>nephrotic<br/>syndrome<sup>4</sup></li> </ul>                         | eGFR ≥25%<br>from baseline<br>over the prior 2<br>years,<br>considered due<br>to active MN<br>■ Severe,<br>disabling, or life-<br>threatening |  |  |
| Serum anti-PLA2R<br>antibody levels<br>(only in patients<br>with anti-PLA2R<br>antibody-positive<br>MN) | <ul> <li>Serial titers are<br/>persistently low<br/>(arbitrarily<br/>defined as &lt;50<br/>RU/mL by ELISA)<br/>or are<br/>decreasing<br/>≥25% by over<br/>the observation<br/>period</li> </ul> | <ul> <li>Serial titers are<br/>&lt;150 RU/mL<br/>and stable or<br/>increasing by<br/>&lt;25%</li> </ul>      | <ul> <li>Serial titers are<br/>high (arbitrarily<br/>defined as ≥150<br/>RU/mL by ELISA)<br/>and not<br/>declining or are<br/>increasing to<br/>≥150 RU/mL</li> </ul> | nephrotic<br>syndrome*                                                                                                                        |  |  |




Translated in improved kidney survival with long follow-up (\*\*).

\*van de Logt et al., 2016. Expert Rev Clin Pharmacol 9: 1463–1478 .
/ \*\*Ponticelli et al., Kidney Int 48: 1600–1604, 1995

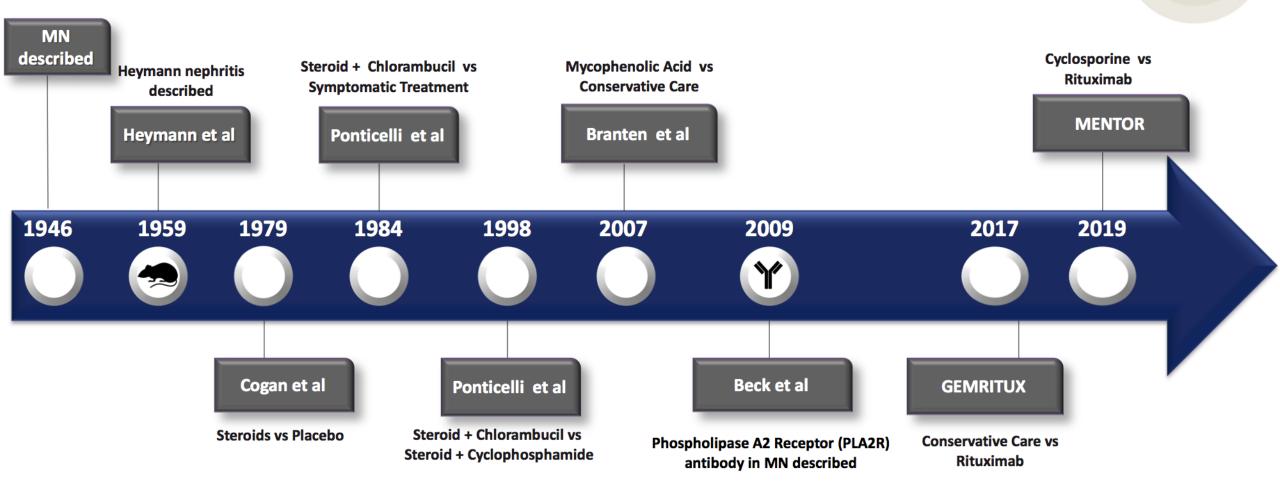
Copyrights apply

#### **Remission in MN**



Treat HTN

ACEI, ARBs


Anticoagulant

#### + Corticosteroids

## Landmark Trials Primary Membranous Nephropathy (MN)

\*

Landmark Nephrology



### Pharmacological treatment of primary membranous nephropathy in 2016

#### Anne-Els van de Logt S, Julia M. Hofstra & Jack F. Wetzels

Pages 1463-1478 | Received 29 May 2016, Accepted 15 Aug 2016, Accepted author version posted online: 18 Aug 2016, Published online:

16 Sep 2016

#### Table 1. Treatment schedules for primary membranous nephropathy.

| Treatment                                               | Agents             | Dosage of therapy                                                                                                                      | Treatment period                                                                                                                                                                   |
|---------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chlorambucil cyclical                                   | Chlorambucil       | 0.2 mg/kg/day                                                                                                                          | Months 2,4,6                                                                                                                                                                       |
| therapy [29]                                            | Prednisolone       | 0.5 mg/kg/day                                                                                                                          | Months 1,3,5                                                                                                                                                                       |
| 'Classical Ponticelli<br>schema'                        | Methylprednisolone | 1 g i.v.                                                                                                                               | 3 consecutive days, at start of months 1,3,5                                                                                                                                       |
| Cyclophosphamide                                        | Cyclophosphamide   | 2.5 mg/kg/day <sup>a</sup>                                                                                                             | Months 2,4,6                                                                                                                                                                       |
| cyclical therapy [28]                                   | Prednisolone       | 0.5 mg/kg/day                                                                                                                          | Months 1,3,5                                                                                                                                                                       |
| 'Modified Ponticelli<br>schema'                         | Methylprednisolone | 1 g i.v.                                                                                                                               | 3 consecutive days, at start of months 1,3,5                                                                                                                                       |
| Cyclophosphamide                                        | Cyclophosphamide   | 1.5 mg/kg/day                                                                                                                          | Months 1–6                                                                                                                                                                         |
| daily therapy [30] <sup>b</sup>                         | Prednisolone       | 0.5 mg/kg/qod                                                                                                                          | Months 1–5, then taper                                                                                                                                                             |
|                                                         | Methylprednisolone | 1 g i.v.                                                                                                                               | 3 consecutive days, at start of months 1,3,5                                                                                                                                       |
| Cyclosporine [31] <sup>c</sup>                          | Cyclosporine       | Start with 3.5 mg/kg/day, achieve level 125–225 $\mu$ g                                                                                | Months 1–6, then taper by 25% per month; continue<br>treatment at 50% of dose until 12 months, then taper<br>to lowest possible maintenance dose <sup>c</sup>                      |
|                                                         | Prednisolone       | 0.15 mg/kg/day, max. 15 mg                                                                                                             | Months 1-6, then taper                                                                                                                                                             |
| Tacrolimus [32,33] <sup>d</sup>                         | Tacrolimus         | Initial dose 0.5 mg/kg per day, achieve trough level<br>3–5 ng/L; if remission is not achieved after 2 months,<br>increase to 5–8 ng/L | Months 1–12, then taper to lowest possible maintenance dose <sup>c</sup>                                                                                                           |
|                                                         | Prednisolone       | 0.15 mg/kg/day                                                                                                                         | Months 1–6, then taper                                                                                                                                                             |
| Rituximab [34-36]                                       | Rituximab          | 1000 mg i.v.                                                                                                                           | Days 1 and 15                                                                                                                                                                      |
|                                                         |                    | 375 mg/m <sup>2</sup> i.v.                                                                                                             | 1-4 weekly doses                                                                                                                                                                   |
| Synthetic ACTH<br>(Synacthen depot®)<br>1 mg/ml [37,38] | Synthetic ACTH     | Start with 1 mg once a week i.m., in 8 weeks time<br>increase to 1 mg 2 times a week                                                   | From week 8 on 18 weeks 1 mg 2 times a week; built<br>down in 13 weeks time (9 months treatment<br>duration in total)                                                              |
| HP Acthar gel® [39]                                     | Acthar gel         | Start with 40–80 units s.c. every other week, increase to 2<br>times a week                                                            | 12 weeks of full dosage of 2 times a week; if no signs of<br>improvement occur after 3 months with 40 units,<br>increase to 80 units twice a week for a full dosage of<br>12 weeks |

<sup>a</sup>KDIGO guidelines advice 2.0 mg/kg/day.

<sup>b</sup>Original study used cyclophosphamide for 12 months. Meanwhile, treatment period has been reduced to 6 months.

<sup>c</sup>It is not known if prednisolone coadministration is needed. Most studies with cyclosporine have used prednisolone.

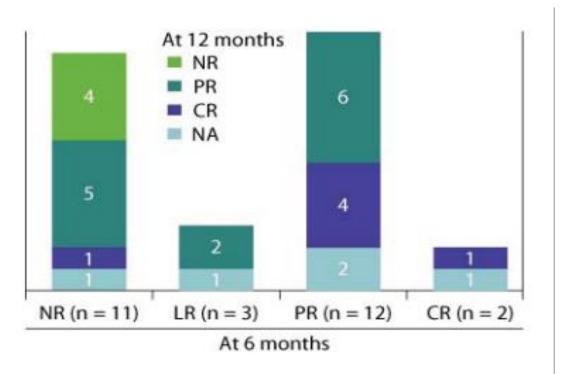
<sup>d</sup>High relapse rate, treatment must be continued in the majority of patients.

#### **Cyclophosphamide +steroids Vs conservative treatment**

|                 |           | Follow-up     | Remission rate <sup>a</sup> | Relapse rate <sup>b</sup> |                                                                     |
|-----------------|-----------|---------------|-----------------------------|---------------------------|---------------------------------------------------------------------|
|                 | Treatment | (months)      | (%)                         | (%)                       | Renal function end point                                            |
| Ponticelli [40] | Treatment | 120           | 83                          | 26                        | Dialysis-free 10 yr-survival: 92%                                   |
|                 | Control   | 120           | 38                          | NA                        | Dialysis-free 10 yr-survival: 60%                                   |
| Jha [41]        | Treatment | 132 (126–144) | 72                          | 24                        | Dialysis-free 10 yr-survival: 89%                                   |
|                 | Control   | 132 (126–144) | 35                          | 25                        | Dialysis-free 10 yr-survival: 65%                                   |
| Howman [42]     | Control   | 36            | NA                          | NA                        | 20% decline in eGFR <sup>c</sup> in 58% and ESRD in 3% of patients  |
|                 | Treatment | 36            | NA                          | NA                        | 20% decline in eGFR <sup>c</sup> in 84% and ESRD in 11% of patients |
| Torres [43]     | Treatment | 52 ± 37       | 42                          | 25                        | Dialysis-free 7 yr-survival: 90%                                    |
|                 | Control   | 47 ± 38       | 0                           | -                         | Dialysis-free 7 yr-survival: 20%                                    |
| Du Buf [30]     | Treatment | 51 (5-132)    | 86                          | 20                        | Dialysis-free 5 yr-survival: 86%                                    |
|                 | Control   | 48 (12-65)    | 20                          | 50                        | Dialysis-free 5 yr-survival: 32%                                    |

Remission rate is 83% in cyclophosphamide vs 38 % on conservative treatment Renal 10 years survival was 92% cyclophosphamide vs 60% conservative treatment.




**Original Paper** 

Nephron Extra 2011;1:251-261

DOI: 10.1159/000333068 Published online: December 24, 2011 © 2011 S. Karger AG, Basel www.karger.com/nne

This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only.

Rituximab Treatment for Membranous Nephropathy: A French Clinical and Serological Retrospective Study of 28 Patients



# 50% PR and CR at 6 months reach to 60% at 12 months

Response 12 months after rituximab treatment in the 11 patients with no response (NR), 2 with LR, 12 with PR and 2 patients with CR at 6 months. NA = Not available.

Michel et al.: Rituximab in Membranous Nephropathy. Nephron Extra 2011;1:251-261

#### Rituximab induced remission in 64% of patient However, the number of non-responders 36% and relapses 30%.

|             |              | Treatment                                             | Type of study               | Patients   | Sex                        | Duration MN                  | sCreat            | Proteinuria  |
|-------------|--------------|-------------------------------------------------------|-----------------------------|------------|----------------------------|------------------------------|-------------------|--------------|
|             |              |                                                       |                             | (n)        | (m/f)                      | (months)                     | (umol/l)          | (g/day)      |
| vedi احما   |              | TV 1 v 275 ma/m <sup>2</sup>                          | Cohort                      | 10         | 0/4                        | NIA                          | 104 ± 44          | 103 + 00     |
|             |              | Treatment                                             | Follow-up (mon              | ths) Remis | sion rate <sup>a</sup> (%) | Relapse rate <sup>b</sup> (% | 6) Renal function | on end point |
| vedi        | Cravedi [67] | RTX 1 $\times$ 375 mg/m <sup>2</sup> (B-cell driv     | en) 12                      |            | 67                         | NA                           | N                 | A            |
| venz        | Cravedi [67] | RTX 4 $\times$ 375 mg/m <sup>2</sup>                  | 12                          |            | 67                         | NA                           | N                 | Α            |
| jger        | Fervenza [34 | ] RTX 2 × 1 g                                         | 12                          |            | 53                         | NA                           | ESRD              | 13%          |
| jgen        | Ruggenenti   | 68] RTX 4 $\times$ 375 mg/m <sup>2</sup>              | 3                           |            | 0                          | NA                           | N                 | Α            |
| jgen        | Ruggenenti   | 68] RTX 4 $\times$ 375 mg/m <sup>2</sup>              | 12                          |            | 75                         | NA                           | N                 | Α            |
| jgen        | Ruggenenti   | 68] RTX 4 $\times$ 375 mg/m <sup>2</sup>              | 12                          |            | 67                         | NA                           | N                 | A            |
| jgen        | Fervenza [36 | ] RTX 4 $\times$ 375 mg/m <sup>2</sup> , repeated     | after 6 mo. 24 <sup>c</sup> |            | 94                         | 6                            | N                 | Α            |
| vena        | Segarra [65] | RTX 4 $\times$ 375 mg/m <sup>2</sup>                  | 30                          |            | 100                        | 23                           | N                 | A            |
| jarra       | Ruggenenti   | 35] RTX 4 $\times$ 375 mg/m <sup>2</sup> or B-cell of | lriven 29                   |            | 65                         | 28                           | ESRD              | 4%           |
|             | Busch [69]   | RTX 4 $\times$ 375 mg                                 | 36 (12–72)                  |            | 71 <sup>d</sup>            | 7 <sup>d</sup>               | N                 | A            |
| <u>jgen</u> | Ruggenenti   | 70] RTX 4 $\times$ 375 mg/m <sup>2</sup> or B-cell of | lriven 31                   |            | 64                         | 30                           | N                 | A            |
| sch [       | Dahan [71]   | RTX 2 $\times$ 375 mg/m <sup>2</sup>                  | 17 (13–24)                  |            | 65                         | NA                           | N                 | A            |
|             |              | Supportive                                            | 17 (13–23)                  |            | 34                         | NA                           | N                 | Α            |

ESRD: end-stage renal disease.

<sup>a</sup>Definitions of remission as used by the authors.

<sup>b</sup>Relapse rate: percentage of relapses in patients with previous remission after withdrawal of medication.

cn = 18 in final analysis.

Dahan

<sup>d</sup>12 months after the last infusion of rituximab.

Ruggenenti P, Cravedi P, Chianca A, et al. Rituximab in idiopathic membranous nephropathy. J Am Soc Nephrol. 2012;23(8):1416–1425.

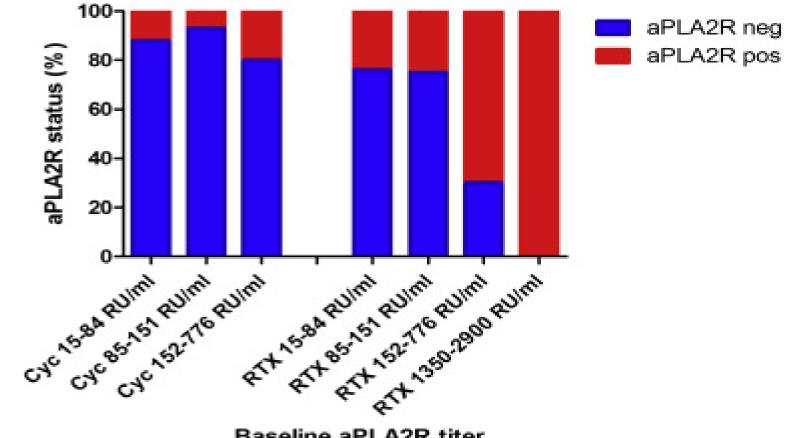
#### Rituximab is inferior to cyclophosphamide. The partial remission rate was lower in the rituximab-treated cohort

|                    | Hazard Ratio              | Ev                 | er group              |    |
|--------------------|---------------------------|--------------------|-----------------------|----|
| Crude              | (95% Confidence Interval) | Ri                 | Cyclophos-<br>phamide |    |
| Partial remission  |                           | 0.65 (0.47 - 0.90) | ) 64                  | 89 |
| Complete remission |                           | 0.99 (0.59 - 1.65) | ) 34                  | 26 |
| Renal failure      |                           | 0.78 (0.36 - 1.67) | ) 11                  | 17 |
| Adjusted           |                           |                    |                       |    |
| Partial remission  |                           | 0.63 (0.45 - 0.89) | 64                    | 89 |
| Complete remission |                           | 0.88 (0.50 - 1.54) | 26                    | 34 |
| Renal failure      |                           | 0.94 (0.42 - 2.09) | 11                    | 17 |
|                    | 1.0                       |                    |                       |    |

They compared two European cohorts that were treated with either rituximab or cyclophosphamide and steroids.

van den Brand et al., . J Am Soc Nephrol 28: 2729–2737, 2017

Immunological remission in PLA2R-antibody-associated membranous nephropathy: cyclophosphamide versus rituximab


Anne-Els van de Logt 🖇 🖂 • Karine Dahan • Alexandra Rousseau • ... Hanna Debiec • Pierre Ronco

Jack Wetzels . Show all authors

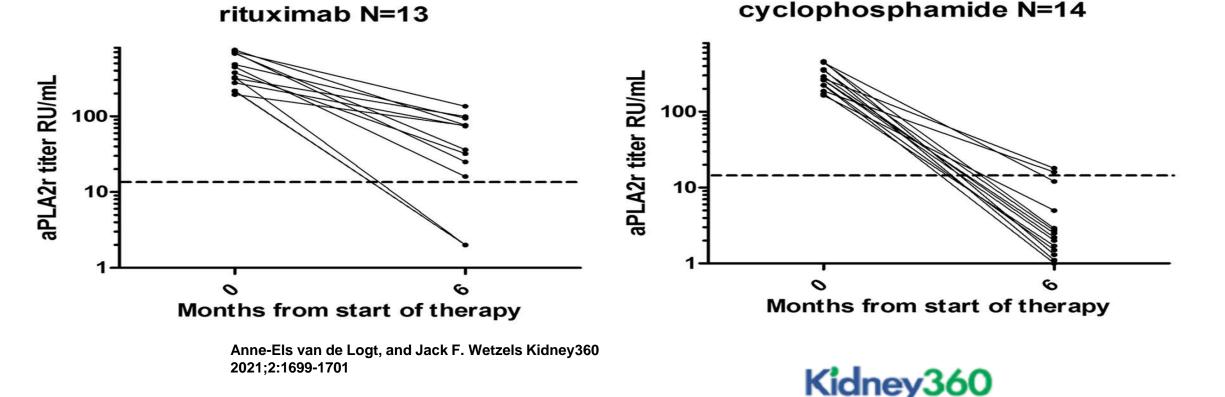
Evaluation of patients treated with cyclophosphamide (1.5 mg/kg/d, duration 8–24 weeks; Nijmegen cohort) or rituximab (cumulative dose 1.5–2.0 g; French cohort).

- Patients treated with cyclophosphamide, antibodies disappeared in almost all patients, independent of baseline level.
- In contrast, patients treated with rituximab disappearance of aPLA2R was less likely in with an aPLA2R titer higher than 152 relative units/ml.

#### Disappearance of aPLA2R after 6 months



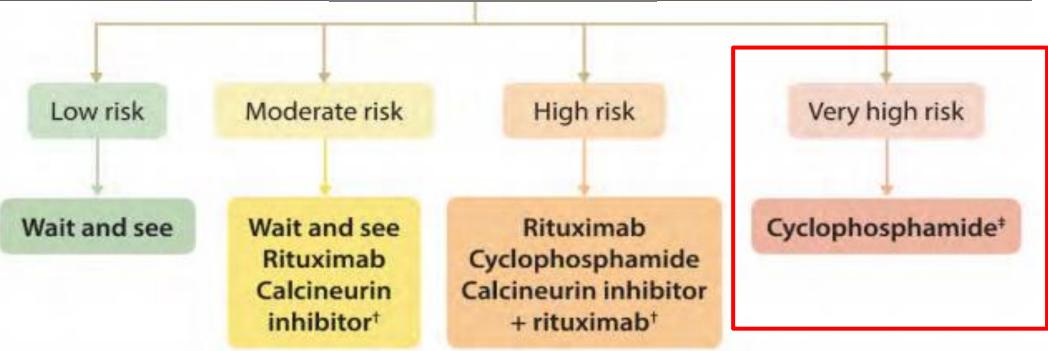
Baseline aPLA2R titer




Van de Logt et al., Kidney International 2018 93(4):1016-1017

### In Very high risk patient Immunological remission (decrease aPLAR 1ab ) is high with cyclophosphamide

**23%** (three of 13) decrease aPLAR 1ab


86% (12 of 14) decrease aPLAR 1ab



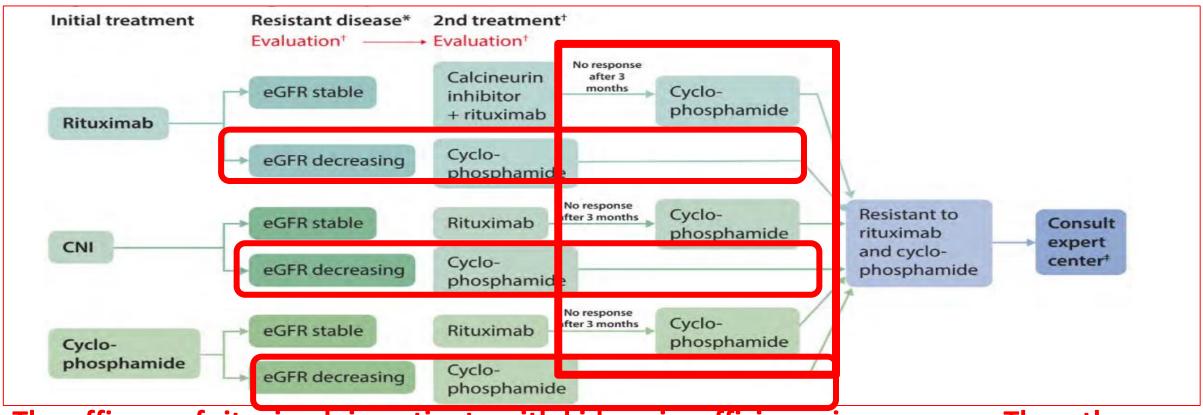


## **Membranous Nephropathy**

**Risk evaluation** 



\*See Practice Point 3.2.1 and Table MN1 for a detailed description of risk evaluation.

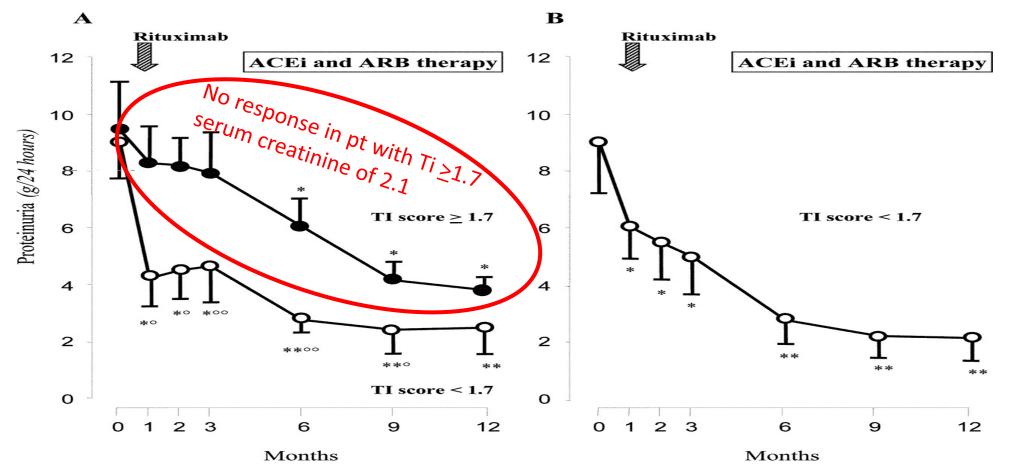

<sup>†</sup>Calcineurin inhibitor (CNI) monotherapy is considered less efficient. Treatment with CNI for 6-12 months with rapid withdrawal is associated with a high relapse rate. Still, its use may be considered in patients with normal estimated glomerular filtration rate (eGFR) and moderate risk of progression, since many of these patients will develop a spontaneous remission. The use of CNI will shorten the period of proteinuria. In patients with high risk of progression, addition of rituximab after six months of treatment with CNI is advised, with the possible exception of patients with documented disappearance of PLA2Rab after CNI treatment.

<sup>\*</sup>There is insufficient evidence that rituximab used in standard doses prevents development of kidney failure. In patients who do not tolerate or can no longer use cyclophosphamide, consultation with an expert center is advised.



# Algorithm for management of patients with treatment-resistant membranous nephropathy

Second treatment is dependent on the severity of deterioration of eGFR as indicated




## The efficacy of rituximab in patients with kidney insufficiency is unproven. Thus, there are no data to support its use in patients with reduced eGFR

\*Evaluation: In patients with resistant disease, compliance should be checked and efficacy monitored (e.g., B cell response, anti-rituximab antibodies, IgG levels, leukocytopenia during cyclophosphamide,<sup>20</sup> CNI levels).

## Rituximab in MN. Who can benefit?

Rituximab is of limited benefit in patients with severe kidney dysfunction



Twenty-four-hour proteinuria from baseline (month 0) to 12 mo after rituximab administration in two cohorts of patients with idiopathic membranous nephropathy (IMN) and a baseline tubulointerstitial (TI) score of <1.7 (responders) or ≥1.7 (nonresponders) wh...



©2006 by American Society of Nephrology

Piero Ruggenenti et al. CJASN 2006;1:738-748

#### **Remission in MN**

+ Corticosteroids

## cyclophosphamide

Higher renal survival 92%. Higher rate of immunological remission 86 Vs 23%. Recommended by guidelines for very high-risk patient, resistance , patient with low eGFR. cost effectiveness.

Rituximab

Lower rate of immunological (23%) and clinical remission (86%). Can not be use in very risk patient, limited effect on patient with low eGFR. Expensive. There is sufficient evidence to support that Rituximab is not preferable than Cyclophosphamide in MN.

On the basis of the evidence (and the calculated cost efficacy), international guidelines recommended treatment with cyclophosphamide and steroids for patients with membranous nephropathy, nephrotic syndrome, and high risk for disease progression.



